该模块需要输入差异基因列表,分别得到上下调基因的GO、Pathway富集结果。当GO term 数量大于50时,我们会对GO term将功能相近的条目归为一类,然后给出GO term 的相似性热图,否则会直接给出富集气泡图,并且给出富集的表格;KEGG 通路富集结果则给出富集气泡图和表格,如下图所示。
suppressPackageStartupMessages(library("clusterProfiler"))
suppressPackageStartupMessages(library("org.Hs.eg.db"))
suppressPackageStartupMessages(library("msigdbr"))
options(repr.plot.width=4, repr.plot.height=3, repr.plot.res = 200)
DGEtable = "RNAseq/DGE/WPS_Cancer_vs_Normal_DESeq2.txt"
outFolder = "RNAseq/Pathway"
if(!dir.exists(outFolder))
dir.create(outFolder)
Tx = read.table(file = DGEtable, row.names = 1, header = TRUE, sep = "\t")
head(Tx)
Symbol = sapply(strsplit(rownames(Tx), " "), function(z) strsplit(z, "\\.")[[1]][1])
UP = unique(Symbol[Tx$DGE == "UP"])
DN = unique(Symbol[Tx$DGE == "DN"])
PG = unique(Symbol)
upEnrich <- enrichGO(gene = UP, keyType = "ENSEMBL", universe = PG, OrgDb = org.Hs.eg.db, ont = "BP",
pAdjustMethod = "BH", pvalueCutoff = 0.01, qvalueCutoff = 0.05,readable = TRUE)
upEnrich[1:4, 1:7]
为了方便作图,我们只展示其中最显著的20个Pathway。
options(repr.plot.width=8, repr.plot.height=6, repr.plot.res = 200)
dotplot(upEnrich,showCategory=20)
上面分析了在上调中富集的Pathway,下面是在下调中富集的Pathway。
dnEnrich <- enrichGO(gene = DN, keyType = "ENSEMBL", universe = PG, OrgDb = org.Hs.eg.db, ont = "BP",
pAdjustMethod = "BH", pvalueCutoff = 0.01, qvalueCutoff = 0.05,readable = TRUE)
options(repr.plot.width=8, repr.plot.height=4, repr.plot.res = 200)
dotplot(dnEnrich,showCategory=4)
xG <- as.list(org.Hs.egENSEMBL2EG)
xUP <- unique(unlist(xG[UP]))
xDN <- unique(unlist(xG[DN]))
xPG <- unique(unlist(xG[PG]))
upKEGG <- enrichKEGG(xUP, organism = "hsa", keyType = "kegg", pvalueCutoff = 0.01,
pAdjustMethod = "BH", universe = xPG, minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.05, use_internal_data = FALSE)
options(repr.plot.width=8, repr.plot.height=6, repr.plot.res = 200)
dotplot(upKEGG,showCategory=20)
上面是上调的KEGG通路,再看下调的。
dnKEGG <- enrichKEGG(xDN, organism = "hsa", keyType = "kegg", pvalueCutoff = 0.01,
pAdjustMethod = "BH", universe = xPG, minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.05, use_internal_data = FALSE)
options(repr.plot.width=8, repr.plot.height=6, repr.plot.res = 200)
dotplot(dnKEGG,showCategory=20)